Desde las primeras iniciativas de siembra oceánica en 1993 la tecnología ha sido expandida y estudiada como un ramo propio dentro del estudio de la ciencia marina. En las últimas décadas se han sumado mas de 13 experimentos en océano profundo los cuales han generado cantidades increíbles de datos, más décadas de investigación en mapeo satelital, simulación y observación directa. Gran parte de estas publicaciones han sido archivadas por el Ocean Carbon and Biogeochemistry (OCB) program.

INTERÉS GENERAL

Boyd, P. W. et al. (2008). Implications of large-scale iron fertilization of the oceans. Marine Ecology Progress Series364, 213-218.

Buesseler, K. O. et al. (2008). Ocean Iron Fertilization: Moving Forward in a Sea of Uncertainty. Science319, 162.

Buesseler, K. O. et al. (2007). Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567-570.

Chisholm, S. W., Falkowski, P. G., Cullen, J. J. (2001). Dis-crediting ocean fertilization. Science 294, 309-310.

Cullen, J. J., Boyd, P. W (2008). Predicting and verifying the intended and unintended consequences of large-scale ocean fertilization. Mar. Ecol. Prog. Ser. 364, 295-301.

Denman, K. L. (2008). Climate change, ocean processes, and iron fertilization. Mar. Ecol. Prog. Ser. 364: 219-225.

Freestone, D., Rayfuse, R. (2008). Ocean iron fertilization and international law. Mar. Ecol. Prog. Ser. 364: 227–233.

Fuhrman, J. A., Capone, D. G. (1991). Possible biogeochemical consequences of ocean fertilization.Limnol. Oceanogr. 36,1951-1959.

Huesemann, M. H. (2008). Ocean fertilization and other climate change mitigation strategies: an overview.Mar. Ecol. Prog. Ser. 364, 243-250.

Izrael, Y. A., Ryaboshapko, A. G., Petrov, N. N.(2009). Comparative analysis of geo-engineering approaches to climate stabilization. Russian Meteorology and Hydrology 34, 335-347.

Johnson, K. S., Karl, D. M. (2002). Is ocean fertilization credible or creditable? Science 296, 467-468.

Jones, I. S. F., Young, H. E. (1997). Engineering a large sustainable world fishery. Environmental Conservation 24, 99-104.

Lampitt, R. S. et al. (2008). Ocean fertilization: a potential means of geoengineering? Philosophical Transactions of the Royal Society 366, 3919-3945.

Leinen, M. (2008). Building relationships between scientists and business in ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 251-256.

Martin, J. H., Gordon, R. M., Fitzwater, S. E. (1991). The case for iron. Limnol. Oceanogr. 36,1793-1802.

Martinez-Garcia, A. et al. (2014). Iron fertilization of the Subantarctic Ocean during the Last Ice Age.Science 343, 1347-1350, DOI: 10.1126/science.1246848

Morel, F. M. M., Hudson, R. J. M., Price, N. M. (1991). Limitation of productivity by trace metals in the sea.Limnol. Oceanogr. 36,1742-1755.

Orbach, M. K. (2008). Cultural context of ocean fertilization. Mar. Ecol. Prog. Ser. 364: 235-242.

Peng, T-H., Broecker, W. S. (1991). Factors limiting the reduction of atmospheric CO2 by iron fertilization.Limnol. Oceanogr. 36,1919-1927.

Schneider, S. H. (2008). Geoengineering: could we or should we make it work? Philosophical Transactions of the Royal Society366, 3843-3862.

Strong, A. et al. (2009). Ocean fertilization: time to move on. Nature 461, 347-348, doi:10.1038/461347a.

Strong, A.L., Cullen, J.J., Chisholm, S.W. (2009). Ocean fertilization: Reviewing the science, policy, and commercial activity and charting a new course forward. Oceanography 22(3): 236-261.

Watson, A., Liss, P., Duce, R. (1991). Design of a small-scale in situ iron fertilization experiment. Limnol. Oceanogr. 36,1960-1965.

Watson, A. et al. (2008). Designing the next generation of ocean iron fertilization experiments. Mar. Ecol. Prog. Ser. 364, 303–309.

Westberry, T.K. et al. (2013). Retrospective satellite ocean color analysis of purposeful and natural ocean iron fertilization. Deep Sea Research Part I: Oceanographic Research Papers 73, 1-16.

 

EXPERIMENTOS EN SIEMBRA OCEÁNICA

 

EQUATORIAL PACIFIC
 

IronEx I
 

Special Volume: Deep-Sea Research II 45, Issue 6, pp. 915-1150 (1998).

Cullen, J. J. (1995). Status of the iron hypothesis after the Open-Ocean Enrichment Experiment. Limnol. Oceanogr. 40(7), 1336-1343.

Edwards, A. M., Plat, T., Sathyendranath, S. (2004). The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment. Ecological Modelling 171, 103–125.

 

IronEx II
 

Armstrong, R. A. (2003). A hybrid spectral representation of phytoplankton growth and zooplankton response: The “control rod” model of plankton interaction. Deep-Sea Research II 50, 2895-2916.

Bidigare, R. R. et al. (1999). Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton: Toward a paleogrowth rate proxy. Paleoceanography 14, 589-595.

Cavender-Bares, K. K. et al. (1999). Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237-246.

Cochlan, W. P. (2001). The heterotrophic bacterial response during a mesoscale iron enrichment experiment (IronEx II) in the eastern equatorial Pacific Ocean. Limnol. Oceanogr. 46, 428-435.

Erdner, D. L., Anderson, D. M. (1999). Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol. Oceanogr. 44, 1609-1615.

Landry, M. R., Kirchman, D. L. (2002). Microbial community structure and variability in the tropical Pacific.Deep-Sea Res. II 49, 2669-2693.

Landry, M. R. et al. (2000). Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27-42.

Mann, E. L., Chisholm, S. W. (2000). Iron limits the cell division rate of Prochlorococcus in the eastern equatorial Pacific. Limnol. Oceanogr. 45, 1067-1076.

Rollwagen Bollens, G. C., Landry, M. R. (2000). Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). II. Mesozooplankton abundance, biomass, depth distribution and grazing. Mar. Ecol. Prog. Ser. 201, 43-56.

Landry, M. R. et al. (2000). Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). III. Dynamics of phytoplankton growth and microzooplankton grazing. Mar. Ecol. Prog. Ser. 201, 57-72.

Rue, E. L., Bruland, K. W. (1997). The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42, 901-910.

 

NORTH PACIFIC
 

Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS I)
 

Special Volume: Results from the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS), Prog. Oceanogr. 64, Issues 2-4, pp. 91-324 (February-March 2005), Tsuda, A. (Ed.).

Nishioka, J. et al. (2003). Size-fractionated iron distributions and iron-limitation processes in the subarctic NW Pacific. Geophys. Res. Lett. 30, doi:10.1029/2002GL016853.

Tsuda, A. et al. (2003). A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300, 958-961.

 

The Second Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS II)
 

Special Volume: Deep-Sea Research II 56, Issue 26, pp. 2731-2958 (2009)
 

SERIES
 

Boyd, P. W. et al. (2005). The evolution and termination of iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol. Oceanogr. 50, 1872-1886.

Boyd, P. W. et al. (2004). The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature428, 549-553.

Law, C. S. et al. (2006). Patch evolution and the biogeochemical impact of entrainment during an iron fertilisation experiment in the sub-Arctic Pacific. Deep-Sea Res. II 53, 2012-2033.

Le Clainche, Y. et al. (2006). Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 111, doi:10.1029/2005JC002947.

Saito, H. et al. (2006). Nutrient and phytoplankton dynamics during the stationary and declining phases of a phytoplankton bloom induced by iron-enrichment in the eastern subarctic Pacific. Deep-Sea Res. II 53, 2168-2181.

 

SOUTHERN OCEAN
 

Southern Ocean Iron Release Experiment (SOIREE)
 

Special Volume: The Southern Ocean Iron Release Experiment (SOIREE), Deep-Sea Research II 48, Issues 11-12, pp. 2425-2773 (2001), Editors: Law, C. S., Boyd, P. W., Watson, A. J.

Abraham, E. R. et al. (2000). Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727-730.

Bakker, D. C. E. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments. Deep-Sea Research I 52, 1001–1019.

Boyd, P. W. (2002). The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: a comparison of in situ iron enrichments. Deep-Sea Res. II 49, 1803-1821.

Boyd, P. W., Jackson, G. A., Waite, A. M. (2002). Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies. Geophys. Res. Lett. 29, 10.1029/2001GL014210.

Boyd, P. W. et al. (2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695-702.

Charette, M. A., Buesseler, K. O. (2000). Does iron fertilization lead to rapid carbon export in the Southern Ocean? Geochem. Geophys., Geosys. 1, 2000GC000069.

Chisholm, S. W. (2000). Stirring times in the Southern Ocean. Nature 407, 685-687.

Croot, P. L. et al. (2001). Retention of dissolved iron and FeII in an iron induced Southern Ocean phytoplankton bloom. Geophys. Res. Lett. 28, 3425-3428.

Jackson, G. A., Waite, A. M., Boyd, P. W. (2005). Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments. Geophys. Res. Lett. 32, doi:10.1029/2005GL023180.

Karsh, K. L. et al. (2003). Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE). Limnol. Oceanogr. 48, 1058-1068.

Law, C. S. et al. (2003). Vertical eddy diffusion and nutrient supply to the surface mixed layer of the Antarctic Circumpolar Current. J. Geophys. Res. 108, doi:10.1029/2002JC001604.

Maldonado, M. T. et al. (2001). Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnol. Oceanogr. 46,1802-1808.

Ridgwell, A. J. (2000). Climatic effect of Southern Ocean Fe fertilization: Is the jury still out? Geochem. Geophys., Geosys. 1, 2000GC000120.

Turner, S. M. et al. (2004). Iron-induced changes in oceanic sulfur biogeochemistry. Geophys. Res. Lett.31, doi:10.1029/2004GL020296.

Watson, A. J. et al. (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730-733.

 

EisenEx
 

Arrieta, J. M. et al. (2004). Response of bacterioplankton to iron fertilization in the Southern Ocean. Limnol. Oceanogr. 49, 799-808.

Bakker, D. C. E. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments. Deep-Sea Research I 52, 1001–1019.

Boye, M. et al. (2005). Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Marine Chem. 96, 257-271.

Bozec, Y. et al. (2005). The CO2 system in a Redfield context during an iron enrichment experiment in the Southern Ocean. Marine Chem. 95, 89-105.

Croot, P. L. et al. (2005). Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mesoscale iron enrichment experiment. Marine Chem. 95, 65-88.

Gervais, F., Riebesell, U., Gorbunov, M. Y. (2002). Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol. Oceanogr. 47, 1324-1335.

Nishioka, J. et al. (2005). Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chem. 95, 51-63.

Rijkenberg, M. J. A. et al. (2005). The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Marine Chem. 93, 119-129.

Turner, S. M. et al. (2004). Iron-induced changes in oceanic sulfur biogeochemistry. Geophys. Res. Lett.31, doi:10.1029/2004GL020296.

van Oijen, T. et al. (2005). Enhanced carbohydrate production by Southern Ocean phytoplankton in response to in situ iron fertilization. Marine Chem. 93, 33-52.

 

Southern Ocean Iron Experiment (SOFeX)
 

Bishop, J. K. B. et al. (2004). Robotic observations of enhanced carbon biomass and export at 55°S during SOFeX. Science 304, 417-420.

Boyd, P. W. (2004). Ironing out algal issues in the Southern Ocean. Science 304, 396-397.

Brzezinski, M. A., Jones, J. L., Demarest, M. S. (2005). Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 810-824.

Buesseler, K. O., Boyd, P. W. (2003). Will Ocean Fertilization Work? Science 300, 67-68.

Buesseler, K. O. et al. (2005). Particle export during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 311-327.

Buesseler, K.O. et al. (2004). The effects of iron fertilization on carbon sequestration in the Southern Ocean. Science 304, 414-417.

Cassar, N., Laws, E. A., Bidigare, R. R. (2004). Biocarbonate uptake by Southern Ocean phytoplankton.Global Biogeochem. Cycles 18, doi:10.1029/2003GB002116.

Coale, K. H. et al. (2004). Southern Ocean Iron Enrichment Experiment: Carbon cycling in high- and low-Si waters. Science 304, 408-414.

Hiscock, W. T., Millero, F. J. (2005). Nutrient and carbon parameters during the Southern Ocean Iron Experiment (SOFeX). Deep-Sea Res. I 52, 2086-2108.

Oliver, J. L. et al. (2004). The heterotrophic bacterial response during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2129-2140.

Twining, B. S. et al. (2004). Cellular iron contents of plankton during the Southern Ocean Iron Experiment (SOFeX). Deep-Sea Res. I 51, 1827-1850.

Twining, B. S., Baines, S. B., Fisher, N. S. (2004). Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115-2128.

Wingenter, O. W. et al. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. Proc. Nat. Acad. Sci. 101, 8537-8541.

Zeebe, R. E., Archer, D. (2005). Feasibility of ocean fertilization and its impact on future atmospheric CO2levels. Geophys. Res. Lett. 32, doi:10.1029/2005GL022449.
Kerguelan Ocean and Plateau compared Study (KEOPS)
Blain, S., Queguiner, B., Trull, T. (2008). The natural iron fertilization experiment KEOPS (KErguelen Ocean and Plateau compared Study): An overview. Deep-Sea Res. II 55, 559-565.

Blain, S. et al. (2007). Effect of natural iron fertilisation on carbon sequestration in the Southern Ocean.Nature 446, 1070-1074.

Full listing of KEOPS publications
 

MEDITERRANEAN
 

Cycling of Phosphorus in the Eastern Mediterranean (CYCLOPS)
 

Thingstad, T. F. et al. (2005). Nature of phosphorus limitation in the ultra-oligotrophic eastern Mediterranean. Science 309, 1068-1071.

 

INTERÉS REGIONAL

 

Southern Ocean
 

Abelmann, A. et al. (2006). Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography 21, doi:10.1029/2005PA001199.

Arrigo, K. R., Tagliabue, A. (2005). Iron in the Ross Sea: 2. Impact of discrete iron addition strategies. J. Geophys. Res. 110, doi:10.1029/2004JC002568.

Bakker, D. C. E. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments. Deep-Sea Research I 52, 1001–1019.

Blain, S. et al. (2001). A biogeochemical study of the island mass e!ect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res. I 48, 163-187.

Bucciarelli, E., Blain, S., Tréguer, P. (2001). Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Marine Chem. 73, 21-36.

Boye, M. et al. (2005). Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Marine Chem. 96, 257-271.

Brzezinski, M. A. et al. (2001). Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean. Deep-Sea Res. II 48, 3997-4018.

Brzezinski, M. A., Jones, J. L., Demarest, M. S. (2005). Control of silica production by iron and silicic acid during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 50, 810-824.

Buma, A. G. J. et al. (1991). Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36,1865-1878.

Coale, K. H. et al. (2003). Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Res. II 50, 635-653.

Edwards, R., Sedwick, P. (2001). Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic waters. Geophys. Res. Lett. 28, 3907-3910.

Erickson, D. J. et al. (2002). Atmospheric iron delivery to the sea and oceanic biologic activity: A correlation analysis of the Southern Hemisphere. Nature.

Fennel, K. et al. (2003). Impacts of iron control on phytoplankton production in the modern and glacial Southern Ocean. Deep-Sea Res. II 50, 833-851.

Helbling, E. W., Villafañe, V., Holm-Hansen, O. (1991). Effect of iron on productivity and size distribution of Antarctic phytoplankton. Limnol. Oceanogr. 36,1879-1885.

Ito, T. et al. (2005). The Antarctic Circumpolar Productivity Belt. Geophys. Res. Lett. 32, doi:10.1029/2005GL023021.

Lavery, T. J. et al. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Roy. Soc. Biol. 277, 3527-3531.

Mayo-Ramsay, J P (2008). Taking a precautionary approach to climate mitigation measures in the Southern Ocean. Antarctic & Southern Ocean Law & Policy Occasional Papers 12, 33-53.

Moore, J. K. et al. (2000). The Southern Ocean at the last glacial maximum: A strong sink for atmospheric carbon dioxide. Glob. Biogeochem. Cycles 14, 455-475.

Nishioka, J. et al. (2005). Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chem. 95, 51-63.

Pollard, R., Tréguer, P., Read, J. (2006). Quantifying nutrient supply to the Southern Ocean. J. Geophys. Res. 111, C05011, doi:10.1029/2005JC003076.

Ridgwell, A. J. (2000). Climatic effect of Southern Ocean Fe fertilization: Is the jury still out? Geochem. Geophys., Geosys. 1, 2000GC000120.

Sarmiento, J. L., Orr, J. C. (1991). Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36,1928-1950.

Schlitzer, R. (2002). Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Research II 49, 1623-1644.

Smetacek, V., Assmy, P., Henjes, J. (2004). The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Sci. 16, 541-558.

Tagliabue, A., Arrigo, K. R. (2005). Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. J. Geophys. Res. 110, doi:10.1029/2004JC002531.

Thomas, D. N. (2003). Iron limitation in the Southern Ocean. Science 302, 565-566.

Timmermans, K. R. et al. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol. Oceanogr. 46, 260-266.

Timmermans, K. R., van der Wagt, B., de Baar, H. J. W. (2004). Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49, 2141-2151.

Visser, F. et al. (2003). The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species. J. Phycol. 39, 1085-1094.

Watson, A. J. et al. (2000). Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407, 730-733.

Watson, A. J., Naveira Garabato, A. C. (2005). The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus B 58, 73-87.

 

Also see OCEAN IRON FERTILIZATION EXPERIMENTS (SOIREE, SOFeX, EisenEx, KEOPS)
 

North Pacific
 

Fennel, K. (2008). Widespread implementation of controlled upwelling in the North Pacific Subtropical Gyre would counteract diazotrophic N2 fixation. Mar. Ecol. Prog. Ser. 371, 301–303.

Johnson, K. S. et al. (2003). Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response. Global Biogeochemical Cycles 17:16.

Le Clainche, Y. et al. (2006). Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 111, doi:10.1029/2005JC002947.

Letelier, R., Strutton, P., Karl, D. (2008). Physical and ecological uncertainties in the widespread implementation of controlled upwelling in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 371, 305–308.

Putland, J. N., Whitney, F. A., Crawford, D. W. (2004). Survey of bottom-up controls of Emiliania huxleyi in the Northeast Subarctic Pacific. Deep-Sea Res. I 51, 1793-1802.

Wu, J. et al. (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science293, 847-849.

Yoshie, N., Fujii, M., Yamanaka, Y. (2005). Ecosystem changes after the SEEDS iron fertilization in the western North Pacific simulated by a one-dimensional ecosystem model. Prog. Oceanogr. 64, 283-306.

Also see OCEAN IRON FERTILIZATION EXPERIMENTS (SEEDS I AND II, SERIES)
 

Equatorial Pacific
 

Barber, R. T., Chavez, F. P. (1991). Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36,1803-1815.

Chai, F. et al. (2007). Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Glob. Biogeochem. Cycles 21, doi:10.1029/2006GB002804.

Chavez, F. P. et al. (1991). Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton. Limnol. Oceanogr. 36,1816-1833.

Fiedler, P. C., Philbrick, V., Chavez, F. P. (1991). Oceanic upwelling and productivity in the eastern tropical Pacific. Limnol. Oceanogr. 36,1834-1850.

Also see OCEAN IRON FERTILIZATION EXPERIMENTS (IRONEX I AND II)
 

Atlantic
 

Baker, A. R. et al. (2006). Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine Chem. 98, 43-58.

Baker, A. R. et al. (2003). Atmospheric deposition of nutrients to the Atlantic Ocean. Geophys. Res. Lett. 30, doi:10.1029/2003GL018518.

Blain, S. et al. (2004). Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnol. Oceanogr. 49, 2095-2104.

Neuer, S. et al. (2004). Dust deposition pulses to the eastern subtropical North Atlantic gyre: Does ocean’s biogeochemistry respond? Glob. Biogeochem. Cycles18, doi:10.1029/2004GB002228.

Sarthou, G. et al. (2003). Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep-Sea Res I 50, 1339-1352.

 

ANÁLISIS Y BIOGEOQUÍMICA DEL HIERRO

 

Iron Biogeochemistry
 

Blain, S. et al. (2001). A biogeochemical study of the island mass e!ect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res. I 48, 163-187.

Bucciarelli, E., Blain, S., Tréguer, P. (2001). Iron and manganese in the wake of the Kerguelen Islands (Southern Ocean). Marine Chem. 73, 21-36.

de Baar, H. J. W., La Roche, J. (2003). Trace Metals in the Oceans: Evolution, Biology and Global Change.In Marine Science Frontiers for Europe. Wefer, G., Lamy, F., Mantoura, F. (eds), Springer-Verlag Berlin Heidelberg New York Tokyo, pp 79-105.

de Baar, H. J. W. et al. (2008). Efficiency of carbon removal per added iron in ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 269-282.

Wells, M. L. (2003). The level of iron enrichment required to initiate diatom blooms in HNLC waters. Marine Chem. 82, 101-114.

Wu, J., Boyle, E. (2002). Iron in the Sargasso Sea: Implications for the processes controlling dissolved Fe distribution in the ocean. Glob. Biogeochem. Cycles 16, doi:10.1029/2001GB001453.

Wu, J. et al. (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science293, 847-849.

 

Iron Availability
 

Borer, P. M. et al. (2005). Effect of siderophores on light-induced dissolution of colloidal iron(III) (hydr)oxides. Marine Chem. 93, 179-193.

Boye, M. et al. (2005). Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Marine Chem. 96, 257-271.

Chen, M., Wang, W.-X., Guo, L. (2004). Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002160.

Chen, M. et al. (2003). Marine diatom uptake of iron bound with natural colloids of different origins. Marine Chem. 81, 177-189.

Nishioka, J. et al. (2005). Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chem. 95, 51-63.

Reid, R. T., Butler, A. (1991). Investigation of the mechanism of iron acquisition by the marine bacteriumAlteromonas luteoviolaceus: Characterization of siderophore production. Limnol. Oceanogr. 36,1783-1792.

Schoemann, V. et al. (2001). Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystiscolonies. Limnol. Oceanogr. 46, 1065-1076.

Visser, F. et al. (2003). The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species. J. Phycol. 39, 1085-1094.

Wells, M. L. (2003). The level of iron enrichment required to initiate diatom blooms in HNLC waters. Marine Chem. 82, 101-114.

Wu, J. et al. (2001). Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science293, 847-849.

 

Iron Analysis
 

Bowie, A. R. et al. (2006). A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Marine Chemistry 98, 81-99, doi:10.1016/j.marchem.2005.07.002.

Lannuzel, D. et al. (2005). Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal. Chim. Acta 556, 476–483.

O’Sullivan, D. W. et al. (1991). Measurement of Fe(II) in surface water of the equatorial Pacific. Limnol. Oceanogr. 36,1727-1741.

 

FITOPLANCTON

 

Banse, K. (1991). Rates of phytoplankton cell division in the field and in iron enrichment experiments.Limnol. Oceanogr. 36,1886-1898.

Barber, R. T., Chavez, F. P. (1991). Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36,1803-1815.

Brand, L. E. (1991). Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36,1756-1771.

Buma, A. G. J. et al. (1991). Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36,1865-1878.

Coale, K. H. et al. (2003). Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W. Deep-Sea Res. II 50, 635-653.

Chavez, F. P. et al. (1991). Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton. Limnol. Oceanogr. 36,1816-1833.

Green, R. M., Geider, R. J., Falkowski, P. G. (1991). Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36,1772-1782.

Helbling, E. W., Villafañe, V., Holm-Hansen, O. (1991). Effect of iron on productivity and size distribution of Antarctic phytoplankton. Limnol. Oceanogr. 36,1879-1885.

Jones, I. S. F. (2002). Primary Production in the Sulu Sea. Proceedings of Indian Academy of Sciences(Earth & Planetary Sciences) 111, 209-213.

LaRoche, J., Breitbarth, E. (2005). Importance of the diazotrophs as a source of new nitrogen in the ocean.J. Sea Res. 53, 67-91.

Lenes, J. M. et al. (2001). Iron fertilization and the Trichodesmium response on the West Florida shelf.Limnol. Oceanogr. 46, 1261-1277.

Putland, J. N., Whitney, F. A., Crawford, D. W. (2004). Survey of bottom-up controls of Emiliania huxleyi in the Northeast Subarctic Pacific. Deep-Sea Res. I 51, 1793-1802.

Sarthou, G. et al. (2005). Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res. 53, 25-42.

Schoemann, V. et al. (1998). Effects of phytoplankton blooms on the cycling of manganese and iron in coastal waters. Limnol. Oceanogr. 43, 1427-1441.

Schoemann, V. et al. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: A review. J. Sea Res. 53, 43-66.

Smetacek, V., Assmy, P., Henjes, J. (2004). The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarctic Sci. 16, 541-558.

Timmermans, K. R. et al. (2005). Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J. Sea Res. 53, 109-120.

Timmermans, K. R. et al. (2001). Growth rates of large and small Southern Ocean diatoms in relation to availability of iron in natural seawater. Limnol. Oceanogr. 46, 260-266.

Timmermans, K. R., van der Wagt, B., de Baar, H. J. W. (2004). Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49, 2141-2151.

Trick, C. G. et al. (2010). Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc. Nat. Acad. Sci.

Veldhuis, M. J. W. et al. (2005). Picophytoplankton; a comparative study of their biochemical composition and photosynthetic properties. J. Sea Res. 53, 7-24.

Visser, F. et al. (2003). The role of the reactivity and content of iron of aerosol dust on growth rates of two Antarctic diatom species. J. Phycol. 39, 1085-1094.

 

EN RESUMEN

 

Bakker, D. C. E. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments. Deep-Sea Research I 52, 1001–1019.

Boyd, P. W. et al. (2007). Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions. Science 315, 612-617.

Boyd, P. W. (ed.) (2008). Implications of large-scale iron fertilization of the oceans. Marine Ecology Progress Series Theme Section 364.

Buesseler, K. O., Boyd, P. W. (2003). Will Ocean Fertilization Work? Science 300, 67-68.

de Baar, H. J. W. et al. (2005). Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment. J. Geophys. Res. 110, doi:10.1029/2004JC002601.

 

Strong, A.L., Cullen, J.J., Chisholm, S.W. (2009). Ocean fertilization: Reviewing the science, policy, and commercial activity and charting a new course forward. Oceanography 22(3): 236-261.Urban, E.,

Haag, F. (2008). Organizations urge caution on ocean fertilization experiments. Eos. Trans. AGU 89, doi:10.1029/2008EO190004.

 

MODELOS

 

Arrigo, K. R., Tagliabue, A. (2005). Iron in the Ross Sea: 2. Impact of discrete iron addition strategies. J. Geophys. Res. 110, doi:10.1029/2004JC002568.

Bopp, L., Kohfeld, K. E., Le Quéré, C. (2003). Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18, doi:10.1029/2002PA000810.

Chai, F. et al. (2007). Modeling responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific Ocean. Glob. Biogeochem. Cycles 21, doi:10.1029/2006GB002804.

Dutkiewicz, S., Follows, M., Parekh, P. (2005). Interactions of the iron and phosphorus cycles: A three-dimensional model study. Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002342.

Edwards, A. M., Platt, T., Sathyendranath, S. (2004). The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment. Ecological Modeling 171, 103-125.

Fujii, M. et al. (2005). Simulated biogeochemical responses to iron enrichments in three high nutrient, low chlorophyll (HNLC) regions. Prog. Oceanogr. 64, 307-324.

Fujii, M., Chai, F. (2009). Influences of initial plankton biomass and mixed-layer depths on the outcome of iron-fertilization experiments. Deep-Sea Res. II 56, doi:10.1016/j.dsr2.2009.07.007.

Gao, Y., Fan, S.-M., Sarmiento, J. L. (2003). Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean. J. Geophys. Res. 108, doi:10.1029/2002JD002420.

Gnanadesikan, A., Sarmiento, J. L., Slater, R. D. (2003). Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production. Glob. Biogeochem. Cycles 17, doi:10.1029/2002GB001940.

Gnanadesikan, A., Marinov, I. (2008). Export is not enough: nutrient cycling and carbon
sequestration
. Mar. Ecol. Prog. Ser. 364: 289-294.

Ito, T. et al. (2005). The Antarctic Circumpolar Productivity Belt. Geophys. Res. Lett. 32, doi:10.1029/2005GL023021.

Law, C. S. (2008). Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364: 283-288.

Le Clainche, Y. et al. (2006). Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 111, doi:10.1029/2005JC002947.

Oschlies, A. (2009). Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake. Biogeosciences 6, 1603-1613.

Oschlies, A. et al. (2010). Climate engineering by artificial ocean upwelling: Channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701.

Parekh, P., Follows, M. J., Boyle, E. (2004). Modeling the global ocean iron cycle. Glob. Biogeochem. Cycles 18, doi:10.1029/2003GB002061.

Parekh, P., Follows, M. J., Boyle, E. A. (2005). Decoupling of iron and phosphate in the global ocean. Glob. Biogeochem. Cycles 19, doi:10.1029/2004GB002280.

Pasquer, B. et al. (2005). Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model. J. Sea Res. 53, 93-108.

Platt, T. et al. (2003). Nitrate supply and demand in the mixed layer of the ocean. Mar. Ecol. Prog. Ser. 254, 3-9.

Sarmiento, J. L., Orr, J. C. (1991). Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36,1928-1950.

Sarmiento, J. L., Dunne, J., Armstrong, R. A. (2004). Do we now understand the ocean’s biological pump?U.S. JGOFS News 12, 1-5.

Sarmiento, J. L. et al. (2004). High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56-60.

Schlitzer, R. (2002). Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Research II 49, 1623-1644.

Tagliabue, A., Arrigo, K. R. (2005). Iron in the Ross Sea: 1. Impact on CO2 fluxes via variation in phytoplankton functional group and non-Redfield stoichiometry. J. Geophys. Res. 110, doi:10.1029/2004JC002531.

Iron Resources and Oceanic Nutrients – Advancement of Global Environmental Simulations. Special Volume: Journal of Sea Research 53, Issues 1-2, pp. 1-120 (2005) (Editor: Veldhuis, M.J.W.).

Yoshie, N., Fujii, M., Yamanaka, Y. (2005). Ecosystem changes after the SEEDS iron fertilization in the western North Pacific simulated by a one-dimensional ecosystem model. Prog. Oceanogr. 64, 283-306.

Xiu, P., Chai, F. (2010). Modeling the effects of size on patch dynamics of an inert tracer. Ocean Sci. 6, 1-9.

Zeebe, R. E., Archer, D. (2005). Feasibility of ocean fertilization and its impact on future atmospheric CO2levels. Geophys. Res. Lett. 32, doi:10.1029/2005GL022449.